Closed Form for the Fibonacci Sequence

The Fibonacci number can be defined as:

\[F_n = F_{n-1} + F_{n-2}\]

where \(F_0 = 0, F_1 = 1\).

Assume \(F_n = s \cdot r^n\), then \(F_n = F_{n-1} + F_{n-2}\) can be rewritten into:

\[s \cdot r^n = s \cdot r^{n-1} + s \cdot r^{n-2}\]

Thus,

\[s \cdot r^{n-2} \cdot (r^2 - r - 1) = 0\]

and \(r = \frac{1\pm \sqrt{5}}{2}\)

Let \(p = \frac{1 + \sqrt{5}}{2}\), \(r = \frac{1 - \sqrt{5}}{2}\), and \(x_k = u \cdot p^k + v \cdot q^k\), we now show that \(x_k\) is also a solution for \(F_k\). That is, we need to show \(x_k = x_{k-1} + x_{k-2}\).

Proof:

\[\begin{align} x_{k-1} + x_{k-2} &= u \cdot p^{k-1} + v \cdot q^{k-1} + u \cdot p^{k-2} + v \cdot q^{k-2} \\ &= u \cdot p^{k-2} \cdot (1 + p) + v \cdot q^{k-2} \cdot (1 + q) \\ \end{align}\]

Since \(r + 1 = r^2(\text{by } r^2 - r - 1 = 0)\), we know \(p + 1 = p^2\) and \(q + 1 = q^2\) Thus,

\[\begin{align} x_{k-1} + x_{k-2} &= u \cdot p^{k-2} \cdot (1 + p) + v \cdot q^{k-2} \cdot (1 + q) \\ &= u \cdot p^{k-2} \cdot p^2 + v \cdot q^{k-2} \cdot q^2 \\ &= u \cdot p^k + v \cdot q^k \\ &= x_k \end{align}\]

Next, if we take \(x_k\) as our closed form for the Fibonacci number, we also need to know what \(u, v\) are. Fortunately, by the definition, we already know \(F_0 = 0, F_1 = 1\), so

\[\begin{align} x_0 &= 0 = u \cdot p^0+ v \cdot q^0 = u + v \\ x_1 &= 1 = u \cdot p + v \cdot q = u \cdot \frac{1 + \sqrt{5}}{2} + v \cdot \frac{1 - \sqrt{5}}{2} \\ \Rightarrow 2 &= u + u \cdot \sqrt{5} + v - v \cdot \sqrt{5} \\ &= (u + v) + \sqrt{5} \cdot (u - v) \\ &= \sqrt{5} \cdot (u - v) \end{align}\]

By \(u + v = 0\) and \(u - v = \frac{2}{\sqrt{5}}\), we know that

\[\begin{align} u &= \frac{1}{\sqrt{5}} \\ v &= \frac{-1}{\sqrt{5}} \end{align}\]

As a result,

\[\begin{align} x_k &= u \cdot p^k + v \cdot q^k \\ &= \frac{1}{\sqrt{5}} \cdot (\frac{1 + \sqrt{5}}{2})^k - \frac{1}{\sqrt{5}} \cdot (\frac{1 - \sqrt{5}}{2})^k \\ &= \frac{1}{\sqrt{5}} \cdot [ (\frac{1 + \sqrt{5}}{2})^k - (\frac{1 - \sqrt{5}}{2})^k ] \end{align}\]

Graph

See the online graph here

Questions

  • Why we assume \(F_n = s \cdot r^n\)?
  • Why we use \(F_n = u \cdot p^n + v \cdot q^n\) instead of \(F_n = s \cdot r^n\) as our closed form?

References

  • http://math.ucr.edu/~res/math153/history07a.pdf
  • http://gozips.uakron.edu/~crm23/fibonacci/fibonacci.htm
  • https://math.stackexchange.com/questions/65011/prove-this-formula-for-the-fibonacci-sequence
  • http://mathproofs.blogspot.tw/2005/04/nth-term-of-fibonacci-sequence.html