
J-PAKE over TLS

The Magic behind
Remote-control Service of
Firefox OS TV

Chun-Min Chang, 2016/5/30

Remote-control

What we are trying to do?
Turn Firefox Android into a TV remote-controller

Demo

https://ody.sh/PGl0ldy4yM

https://ody.sh/PGl0ldy4yM

When you see this topic, you must think…
● what is J-PAKE ?
● is it a kind of PAKE ?
● and what is PAKE ?
● what’s the difference between J-PAKE and the

others ?
● hmm….TLS is stranger again for me...

J-PAKE over TLS

● TLS
● PAKE

○ Security Requirements
○ General Two-stage Framework
○ Diffie-Hellman Key Exchange
○ DH-EKE
○ SPEKE

● J-PAKE
○ Intro
○ Protocol
○ Zero-Knowledge Proof

● J-PAKE over TLS
● Discussion

So, here is the outline

TLS

● Its predecessor is SSL, invented by
NetScape

● https = http over TLS
● Make sure the channel is

○ Confidential
○ Authenticated

● Needs a trusted third party
○ Public key infrastructure(PKI)

● Symmetric encryption

Intro of TLS

TLS layer in OSI model

TLS handshake

TLS session key

TLS certificate authentication

why don’t we just use TLS?

● There is no PKI in local network
● TLS can still establish a confidential channel without

authentication
● So, we need to use other alternative to authenticate

○ PAKE can be used as an authentication method
● PAKE over TLS

○ Secure Modular Password Authentication for the Web Using
Channel Bindings

http://www.manulis.eu/papers/MaStDe_SSR14.pdf
http://www.manulis.eu/papers/MaStDe_SSR14.pdf

PAKE

Intro of PAKE

● Multiple parties can establish a shared cryptographic
keys based on their same knowledge of a password
by messages exchange via an insecure channel

● The unauthorized party who doesn't possess the
password has no way to get the password

● It can use weak human-memorable passwords to
generate a high-entropy session key

Intro of PAKE

● Applications
○ Mutual authentication
○ Alternative for computationally expensive authentication

● Common PAKE
○ EKE: Encrypted Key Exchange
○ SPEKE: Simple Password Exponential Key Exchange
○ J-PAKE: Password Authenticated Key Exchange by Juggling

Security Requirements

● Off-line dictionary attack resistance
It doesn’t leak any info that allows attackers to perform offline-exhaustive
search to find the password

● On-line dictionary attack resistance
An active attacker can only test one password per protocol

● Forward secrecy
The session keys still keep secure even the password is later leaked out

● Known-session security
If one session is compromised, other established session won’t be
affected

General Two-stage Framework

● Key establishment
○ Negotiate a session key for their communication
○ Common method is Diffie–Hellman key exchange

● Key Confirmation
○ Authenticate each other

Diffie–Hellman Key Exchange

Eve is a passive attacker

Diffie–Hellman Key Exchange

DH in color

Try yourself: http://goo.gl/I52ecS

http://goo.gl/I52ecS

Diffie–Hellman Key Exchange

DH in math

Key Confirmation

Challenge–Response Authentication

Key Confirmation

Hash–Key Authentication

Encrypted Key Exchange

● Key establishment by DH
● But use password to encrypt/decrypt the public key

instead of directly sending it

Encrypted Key Exchange

simplified version

Encrypted Key Exchange

● Drawbacks
○ It needs a very large exponent
○ It needs to choose modulo p carefully

■ If p = 263 = (00000001 00000111)2, then group
element must be in [1, 262]. We can guess the
first seven bits in the first byte is all 0

Simple Password Exponential
Key Exchange

● Key establishment by DH
● But the group generator is derived by password

instead
● The prime p must be a safe prime, p = 2q + 1, where q

is also a prime.

Simple Password Exponential
Key Exchange

simplified version

Simple Password Exponential
Key Exchange

● Drawbacks
○ An attacker may test multiple password per

protocol
■ g ≡ (pwd)^2 (mod p)
■ (q+k+1)^2 ≡ (q−k)^2 (mod p = 2q + 1)
■ suppose q = 11, then

● k = 0: 11^2 ≡ 12^2 ≡ 6
● g is not 6, then pwd must not be 11 or 12
● k = 1: 10^2 ≡ 13^2 ≡ 8
● if g is not 8, then pwd must not be 10 or 13

Simple Password Exponential
Key Exchange

Impersonation
Attack

J-PAKE

● Why we need J-PAKE?
○ EKE needs large exponents and may leak partial information about

password
○ SPEKE allows an attacker tests multiple password in one protocol

execution
○ EKE and SPEKE are patented

● Applications
○ Thread (IoT network protocol)
○ OpenSSH and OpenSSL
○ Firefox Sync
○ Palemoon sync(forked from Firefox)

● Zero-Knowledge Proof
○ Provides a valid knowledge proof of a discrete logarithm without

revealing it

Intro of J-PAKE

J-PAKE

ZKP by Schnorr signature

J-PAKE over TLS

J-PAKE over TLS

J-PAKE over TLS

J-PAKE over TLS

Discussion

Why does J-PAKE need ZKP?

Without ZKP, J-PAKE will suffer

impersonation-attack

● Save the effort to establish TCP channel
and negotiate the encryption module

Why do we need TLS instead of
using J-PAKE key directly?

● Password is human-memorable weak
secret

● PAKE can keep safe of the established
session

Why don’t we just use password
to authenticate each other?

● If the device is unable to operate large
exponents

● If the network latency isn’t too long

When do we use J-PAKE

● If x2 , x4 , s = 0, then K = 1
● An attacker can intentionally choose x2 =

0 or x4 = 0 to get K = 1 even he doesn’t
know the password

Why x2, x4 can not be 0?

See more here

https://chunminchang.gitbooks.io/j-pake-over-tls/content/

